2. -, , , , (., , [6. . 47).
3. (1), (2) .
, .

1. . // . - 1983. - . 141. - . 2. - . 343-374.
2. A.A. : . - .: , 2005. - 230 .
3. . . -
// .
. - 2011. - 5. - . 41-52.
4. . .
// . - 2010. - . 46, 6. - . 78-89.
5. Kosarev L. Chaos-based cryptography: a brief overview // Circuits and systems. - 2001.
- Vol. 3. - C. 6-21.
6. . . - .: -
. . . , 2002. - 81 .
7. BA., . -// . - 2010. - 7. - . 61-66.
... .. .
- ; e-mail: skolesnikova@yandex.ru; 634050, . , . , 40; .: 83822510530; ..-..; .
Kolesnikova Svetlana Ivanovna - Tomsk State University of Control Systems and Radioelectronics; e-mail: skolesnikova@yandex.ru; 40, Lenin aven., Tomsk, 634050, Russia; phone: +73822510530; cand. of eng. sc.; associate professor.
681.51
.

(), , . , . . , -, , -, .
; ; ; .
Al.A. Kolesnikov
METHOD OF NONLINEAR ADAPTIVE CONTROL OF ACTIVE VIBRATION
PROTECTION SYSTEMS
In the report we propose a new nonlinear adaptive control law of electromagnetic active vibration protection system that allows compensating the external harmonic perturbation on different classes of technological and mobile objects, which is directly related to their technological security. The synthesized control law of active vibration protection system has significant advantages over the known ones, for example, linear control laws for active vibration protection system of various objects. The proposed method may be applied for active vibration protection system design of various purposes. The essential novelty of the method are the procedure of control law cascade synthesis and creation of unity for processes of self-organization and control.
Vibration protection; electromagnetic system; adaptive control law; external harmonic disturbances.
. . , , -, , , , . - [1-18], . . , , , -[16-18].
. , [1-18]. () . , , , .
, , . : , . , -, , - [16-18].
. 1.
. 1 , - ї [16-18], : 1 - , 2 - , 3 - , 4 - , 5 - , 6 - , 7 - .
. 2.
, , (. 2,), (. 2,6)
( . 2, ).
, [18].
, ї (. 1), [16-18]. , - . , , , . , . ї (. 2). ,
(. 2,). -, , (. 2,6). -, ( . 2, ).
( . . 1).
1 2 , f (t). 6 . - 3, 7, 2 4 . [18]. , , , f (t). U (. . 1) ,
M , - 6 -.
[16-18].
-( . . 1).
. , [16], : dx1 (t)
i = ax1 + bu, dt 1
dx2 (t) 1^.1...
------= ^\^2 2x3----F(xi ) H-f (t) g, /4..
dt 1 2 2 3 M 1 M (1)
dx3 (t)
--3 = x2,
dt 2 = yx3 + F (x{) mg, x1 - ; x2, x3 - ; F(x1) = x2 - ; f (t) = Asmrn ; M0, M^ , ; - -.
,
= yx3 + F(1) mg <, (2)
- , ,
; - .
[16-18].
(1)

dx1(t) +
4 = ax1 + bu, dt 1
dx2 (t) 1 ., N / \
= 1x2 2 x3 TT F (x1) z(t), dt M
dx3(t) = (3)
dt x2, dz(t)
= , dt
= 7x3 + F (xx) M 0,
z - ,
f (t) (. . 1).
. -
(2), u -
-^.
u
1 = -/*! +7x4, (4)
x4 - , ї ; - . , 1 (4)
^(t) + 1 = 0, (5)

^px1(t + T- 1 = ∞. (6)
2/ x4 T1
(3) (6),

(bu ax1 )) = ^4( + -1 1, (7)
2^x4 T1
.
(5) -
1 (4), . . , -
T ,
x4 = ^2 . (8)
, , ..
2 = + k1Z + ^2, (9)
(2) (8)
2 =7x3 + x4 + Ax2 + k1z mg . (10)
, 2 (10)
T22(t) + 2 = 0, (11)

k1 + Vx2 + x4 (t ) + ^x2 (t) + 2 = 0. (12)
T2
(12) (3) :
x4 (t) = 7x2 +^1x2 + 3x3 + ~~ + Zj k1 jr 2 . (13)
, x4(t) (13) (7), :
J x4 ^ + k1z + ^x2
7x2 1x2 + 3 x3 + + z k1 -------
I M ) T2
bu = ax1 1
^fiPx4
x1Jx4
T1
(14)
(14) . , , , T1 T2 -. ,
< (2). u (14) x3 - . , u (14) -
= | , -
/() .
[19-21].
. . 3 - 8 (1) (14) = 33,3, = 5, = 585000 //2, = 10 , = 100 , 1 = 6,6 /, 0,2 = 5890 /, / = 10, . = 1, = 1, = 1. /1() = 2008(2000?).
. 3. ()
. 4. ()
. 5. F()
. 6. \()
. 7. 2 ()
. 8. 3 ()
. 9-14 (1), (14) /2 (t ) = 50 sin (50t ).
0,0'
0,0'
0,0'
0,0'
-0,0
-0,0
-0,0
-0,0
-0,1
, 5_ _ _ _ _

- > ' / -

) ;/ \
^ '

] :

2 2 1 2,2 2,3 2,4 tf
. 9. y{t)
. 10. y{t)
. 11. F(t)
. 12. xi(t)
. 13. 2 (t)
. 14. 31)
. (1), (14), (14) .
, [16-18], (14). , -
(2) ~ 1, (14) ~ 1 (. . 4, 10). , , ї.
, (1) . , .

1. .3. . - .: , 1976.
2. ., . . - .: , 1980.
3. .., .. . - : , 1982.
4. . ., . ., . . .
- .: , 1985.
5. .. . - .: - .
. . . , 2000.
6. . // . - 1972. - 5. - . 31-34.
7. . ., . . // . . -
. - 1962. - 3. - . 39-46.
8. . -
. // .
- . - 1967. - 4.
9. . ., . ., . . -
// . - .: , 1971. - . 70-87.
10. . .
// . - .: -, 1974. -. 66-75.
11. . .
// . - 1997. - 12. - . 59-70. 12. . ., . ., . . -// . - .: , 1973.
- . 66-69.
13. . . -
( ) // , . - .: , 1973. - . 162-173.
14. . .
-104 // .
- 1993. - 12. - . 13-17.
15. . ., . ., . .
// . - 2000. - 2. - . 15-20.
16. . ., . ., . . -
// ,
. - 2003. - 1. - . 13-18.
17. . ., . ., . .
// . . . - 2003. - 1. - . 35-41.
18. . ., . ., . . : -
, // ,
. - 2004. - 2. - . 13-18.
19. . . - .: , 1994.
20. .. : // 6- ї ^-2010). - .: ї, 2010. - . 22-29.
21. . . : . - .: , 2006. - 240 .
..., . .
- ї . ; e-mail: anatoly.kolesnikov@gmail.com; 347928, . , . , 2; .: 88634360707; ; ...; .
Kolesnikov Alexander Anatolevich - Taganrog Institute of Technology - Federal State-Owned Autonomy Educational Establishment of Higher Vocational Education Southern Federal University; e-mail: anatoly.kolesnikov@gmail.com; 2, Chekhov street, Taganrog, 347928, Russia; phone: +78634360707; the department of synergetics and control; cand. of eng. sc.; associate professor.
681.51
.
:
, , . -, - . , , .
; ; ; ; .
A.A. Kuzmenko
HYDROTURBINE ROTATION FREQUENCY CONTROL SYSTEM: INTEGRAL ADAPTATION
Hydroturbine, as well as any complex system, is operating under conditions of various external and parameter disturbances of external environment. In case of the worst disturbances we need to build hydroturbine control laws providing stability of hydroturbine in a whole and turbine rotor rotation frequency stabilization. The novelty of the paper is design of adaptive control system for turbine rotor rotation frequency. This design is based on principles of integral adaptation of synergetics control theory, so we don't need to synthesize of state and disturbance observers.
Hydroturbine; synergetics control; invariant manifold; the worst disturbance; integral adaptation.
. . () 15 % [1, 2]. . , -