-

ticle the algorithm of median filtering and algorithm of block coding to reduction of the peak-
factor in systems which use OFDM signals.
Key words: OFDM, peak-to-average, modulation.
621.37:621.391
1- 1 1 1 1
..
.
3aco6iB - 1 i , 1 -ho i i , ^. i ii i-i ii 3 - i ii - [1].
i 1' , -1' i i, i i i . i i -i 1' i .
i i i ii, ' *1 i
[2, 3, 4] - i i i, i - (). i -i-i x i . , i , x i i.
[5, 6, 7] -ix i i i, i - ii . i i -i x i . , i , x i
{ .
[8-11] 1, - - 1. - , 1 -, 11 - 1 (), ! 1 , 1 - 1 , 1-. 1 1 1. 1 1, ! () 1 1 , 1 .
, ! - - 1 - 1 .
! - - 1, - : -- 1 -.
i .
- 1 , 1 d ! , 1! 1 . S1(t) - , 1 1() 1 1() [0,] , 2() - , 1 2() 1 2() [0,] . 1() { 2() 1() S2(t)
1 {, }. : ) = + ),
2() = S2(t) + 2(), (1)
S2(t) = Sl (-5),
xS - anpiopi i ( ii i ii [0,xSmax < Ta]).
ii ii i ii iiii i n1(t) i n2 (t): Mn, - ii i i, Mn = 0; N = const - i.
i rS
ii U1 (t) i U2 (t), i ii [0, Ta ].
(1) - - S (t) , li , ! ! i -i i [1, 3]:
K12 ( ) = maX
/ (t ) U2 (t-X ) dt
(2)
i (2) i ! i S (t) ii.
- i, , i, .
i ! i i - i (2) i i ii i i, , ii-i i - [13]:
F(0) = const exp [q(0)], (3)
F (0) - i ii -
2 -
i; q(0) = j,(t) S (t, 0)dt - i ; ,(t) = U1(t) -
N
ii i ii i n1(t); S (t, 0) = U2(t -x ) - i i ; 0 - .
i 0 = f () ,
ii q (0) i yMOBi:
d q(0) = 0, 0 = 0. (4)
piB^HM (4) ' , - i i [3, 12, 13].
! i -
pi pi, q (0)
pii (3) [16]:
{2 I
I U*( U2( j) exP(-jx (0))f, (5)
N J
U1(j),U2(j) - i ' i U1(t) U2(t) -i.
, ! - U2(t) i ii , pi (5) i
2 * ]
q( j, 0) = Rej I U1( j) U2 () exP( j(2() - ))df, (6)
I N J
U2( j) exp( j(2() - )) - i .
, pii (6) i ! . , pi (6)
q( j, 0) = Re j-2 J ^() U2 () exp (j (()-())) d [, (7)
I N J
() = 2 ()-1 () pi () - i; () = - ii- .
' pi (7) i () - i! i! i! i! : (() -()) = const. - pi :
(() - ()) = () - ^() = () - = const, (8)
/ / /
/ - pi .
ii ! () () , -
i 0 i
, i i . iii -i . ! - i i -i, i ! i (t) i S2 (t). ii i -
i S1 () = S2 () i ! i iii i
. ! ! i! 12() = qs() (7) i i ii -i (8) i ( S1 (t)) i ( S2 (t)).
i i i ! () - i = (). , - () (8), i (7) -
:
2
q(,0) = Re\ | Ul() 2() ((()/--))d^. (9)
[ N )
i (9) ' i i - 0, qmax (, 0) i ii. - i :
dq( , 0)
d
^

/
2
N
/ 2 ()

sm
()

V
V (
+ cos
V

()


2 / * \ \ (() --cos() / 1()2() sm
N



+

/
d
(10)
d +
2
--sin () / 1() 2() cos
V
(() ^ d = 0 V/
i ' i (10):
.

/ 1() 2() sin
arctg

^()
d

/ 1() ^2()
()
+ 2

d
(11)
2 = 0, () > 0 - ii i! i! ^(, ); = -1, () < 0;
'
<


i (11) , - .
i () - , i -! ii - (), i i ^
[14] i - i i i 1() U2(). i ! ! i - i (), - i ^ ():
^()-/ = (^)-/ = -^ . (12)
(12) i (())- - i .
i-i - i (11) :
1. ./

arctg-
I 1// ) - 21 /) - Sin
/=/
^(/) V

/
I 1/ (/) - 2/ (/) - C0s
^(/)
+ 2 -
/=
/

/
(13)
/ - ! / - ; 1, 1 - i / - 1 () , ii i / / ; = / - - .
i i-i i -i-i i. i ^ . i :
= + . (14)
iiiil i - i i , , - ' (). i-
1
[15]:
= 2L - - ^2 , (15)
L - ii ii; - i.
i
, - , i i:
= + . (16)
- (L -1) i S12l () 1 - :
= 0,5 - (L -1). (17)
-! ii - () L :
= ^- (L-1). (18)
i (14)-(18) i i -i i i: = 2L - - ^2 + 2 - (L -1) - =
= 2 ( - log2 + L -1) . ( )
i i i-i -
ii -i-i i [16] -iil i :
= + ^. (20)
i i [15]: = 2L - - log2 . (21)
i ii - (De / ^) () ( -1) :
= ( / ) - -( -1), (22)
- , i i;
2 - 8 - ; 5 - .
(20), (21) i - i:
= 2L Ncc Ncc + / ) Ncc (L -1). (23)
i -i-i i i-i i i i:
. 2L ^2 + (D9 / ) ( -1) (24)
2 12 ^ + 2 ( -1) ( )
D9 = , (D9 / 9) = /289 i ii -i i i = /289.
ii i i [1]. i - i (24): = 3 ^2 + ( /289)
= 3 + 2 (25)
i i (25) , 89 = 0,3∞, = 512 i i-i = 11 i 89. - i i i - - . -i i-i i ?2 aiia - i ai . ii i ?2 -ai i ! ) ! [12]:
= + , (26)
/
= 2/ ; =
8
+
20 ' 20
- -
; 0 - !; 8 = 1 - 2, - iaaa i; - / ai ! ; ^2 - .
2 i ! i / i i i ! -i Nm i i. i
! 2 i a .
i - i, i- (11) i (13), , ii i S12(jk), i i (())- (). (()) i i Nm i i i .
, ^ <2td i-i ii i i! <2 i ! -! i! 2 .
i ! ! i! i 2 i-i i- !! i ii! ! ! 2 -i . , < i! ii () (()) -i = i:
max {} = ( / )2 < (). (27)
i (())- S12(jrnk) - i ! i Nm i ii i i Nm i:
Nm 7 d
=~rJL i (28)
S
Nwd ! -i! ! ( / ) < + b i i:
\2
N.
^ + 1
\
N
. (29)
i i i i -i! i 2 i-i -
, i (26)-(29) :
N - N
_ .__
N...
2.,, _ 2 _
,2
0,25

+1


0,25
2
2+


1

2 ,
(30)
0 ^
ai i (30) , i i i - ai i i 5 aia i -
! _( + )/2. i i
i-i
aia
i

-

51 _ 2 2 10 / ( 1), 52 _ 2 10 10 / ( 2), . 1.
5 >
3
X
'
X X
)
3 .0 ;


X

X
4 5
2,5
1,5
0,5
1000
2000
3000
4000
, 6,28*106 /
. 1. 1 -
ai . 1 , - iaa i i ! !
i 2 i-i - 2% i ai [12].
- i , 2%.

- - i -
1
5
2
1
0
0
nopiBMHHi - . i - i i .
i i -i i-i , , i , i i. i , - i i i -
i i - 2%.

1. ., .., .. / . . .. . - : -1ї, 2008. - 588 .
2. .., .., .. . - .: -, 1966. - 248 .
3. .. . . . 2-, -. . ., . , 1977. 320 .
4. .., .. . - .: . , 1964. 640.
5. .., .. . - .: , 1972. - 216 .
6. .. //, 1982, . 70, 9, . 126-139.
7. 2190236, G 01 S 5/04 . - .. , .. , .. , . 13.09.2000; . 27.09.2002 .
8. .. . - , 12(67), 2002, . 18-22.
9. Jacovitti G. and Scarano G., Discrete time techniques for time delay estimation, IEEE Trans. Signal Procession, vol. 41, pp. 525-533, Feb. 1993.
10. Moura Jose M.F., Baggeroer A.B., Passive Systems Theory with Narrow-band and linear Constrraints: Part 1 - Spatial Diversity, IEEE Journal on Ocean Engineering, vol. OE-3, pp. 5-13, 1, Jan. 1978.
11. 2276381, G 01 S 5/04. . - .. , . , .. , .. -. . 12.01.2004; . 05.10.2006 .
12. .., .. . - .: , 1987. - 240 ., - ( . . 27).
13. .. . - .: , 1983. - 320 .
14. .. . - .: , 2001. - 456 .
15. / .. - : , 2003. - 608 .
16. .. / .. , .. , .. // . . - : , 2006. - 4(39). - . 36-43.
.. - - i i. -- , - 11 . 1 1 1 .
i : 1, - , .
.. - . - , . .
: , - , .
Tsyporenko V. V. Correlation-interferometr method of DF with dispersion transformation of complex cross spectrum of signals. digital method of dispersion cross-correlation DF which differs of subsequent direct determination of delay and proper direction to the source of radio radiation is developed. The compare analyze of fast-acting and error of developed method is executed.
Keywords: digital spectrology, digital spectral cross-correlation DF, without searching determination of radio direction.
621.39
1 1 1 1 1
., ..
1 - 1 () ! . - 1, 1 1, . 1 i - i i [1].
i () ()