FINITE VOLUME METHOD FOR CALCULATION OF ELECTROSTATIC FIELD IN THREE-DIMENSIONAL SPHERE WITH CUBIC CAVITY
Patsiuk V.
Institute of Power Engineering of the Academy of Sciences of Moldova
Abstract. The paper presents the numerical approach based on finite volume method, which is used to calculate the electric field in three-dimensional environment. For this reason for formulated Dirichlet problem it is proposed the construction of computational grid based on space partition, which is known as Delaunay triangulation with the use of Voronoi cells. The numerical algorithm for calculating the potential, electric field strength and capacitance in the 3-d sphere with cubic cavity is proposed. Numerical results for potential distribution, electric field strength and capacitance in three-dimensional sphere with cubic cavity are represented. Keywords: Electric field, potential, capacitance, numerical method.
METODA VOLUMELOR FINITE PENTRU CALCULAREA CAMPULUI ELECTROSTATIC
PENTRU SFERA CU GOLUL CUBIC Patiuc V.
Institutul de Energetica al AM Rezumat. in lucrare se examineaza utilizarea metodei volumelor finite pentru a calcula campul electric in mediul tridimensional. S-a formulat problema Dirichlet cu construirea retelei de divizare a spatiului, denumita trianghiularea Delaunay i utilizarea in schema de calcul numeric a celulei Voronoi. S-a propus algoritmul de calcul numeric a potentialului, intensitatii campului electric i capacitatii sferei cu cavitatie de forma cubica. Sunt prezentate rezultatele calculelor repartitiei potentialului, intensitatii campului electric i capacitatii sferei cu cavitate de forma cubica.
Cuvinte-cheie: Camp electric, potential, intensitatea campului electric, capacitatea, metoda numerica.
..
. . , . , . , .
: , , , , .
1.
- . . , , , [1-3]. , , [4-6] .
, , .
, . .
- . , , . , . , , .
, , . , , .
, [7, 8].
2.
(, , ) , (, ) - . (, , )
div(s gradu) = -(, , ), (1)
(, , ) - . , (1) div(s gradu) = 0. = 2 : 2, = 0. (, , )
(, , = , , ) , )


= 0, (2)
,
- 2.
= -grad , = . : [] = 0 [(, )] = 0, , - .
3.
0 = 0 + , (). . . 1 . 1/8 . . , . , , , .
. 1. , 4501
955 .
*, -
*
. * , .
. . 2 74. , 2, 73, 75, 80, 176, 182, 188 332, , . , , .
, . * Qi, , , 0 .
. 2. 74,
(1), (2) - (, , 2), . (, , 2) .
= 234 (. 3) * ( , , ) - . Ni (,, ), = 1,4, : 1 0:
1, =
Ni ( ) = ^ . -
[0, *
:
N (, , ) = w(1) + + w'-3) + w.
(2),
,(3),
,(4)
(3)
w(1), w(2).
w ,(3) w (4)
, = 1,4 . 4 = ^, = 1,4. = (xi, , zi), = 1,4
=
( 7
2 2 7 2 1
73 1
V 4 4 7 4 ,
I =(/,(1),(2),/,(3\(4)) ^)
(1, =
0, * .
, ( ) (, , ), = 1, 2, ..., , +1, ..., , , - . (,, ) -, .. , . (, , )
"1
(X, , 2) = ' 1 (' ' 2)- (4)
1 =1
, , (4) (X' ,' * (X' 1' ) = .
, (1), (2) , . (4) (1) (, , 2)
|&(%*) = -|, = 1,; (5)

1 1 ~ | , = ^ 1 = ~; (6)
1=1 1=1
~ =-\; , = |,)^ = -|,^.

^ , (6)
^ " _
, = , = - ,^> =. (7)
,=1 ,=+1
, , (5) (, , 2)
2∞() = ^(), .
*
(, , ) * : (, , 2) . (5) (, , )
|1(8gaduh = -|, = 1, (8)

, (, , )
|<(8) = - |, (9)
* - .
-



. () = -(, , ) * .
, (9)
|(gadu) = - /(, , ). (10)

(10)
|div(sagadu) = /^ = |^<3,) = / , (11)
' * "'*

gadu, ) = |

* - * ; - -

* , / - .
(10)
| = - /(,,) . (12)
'
, (1), (2) (12) . , . , - (7).
* (. . 2) 0 , , = 0,8
; , , = 1,8 - , 0 ; {, , = 1,8 - . * (12) :
I ^ ^ = ± /. ^ , (, )
'
0

1 0
- . (12)
/( , ) = ( ,
*
:
0 - . (12)
. (,) , =- .
,=1
0

() + ( ) = "∞(0)0 ;
1 =1
(13)
3 __8
, =8 (, , I = 1,8; =-,

1
1=1
(13), (2). . , . (13) ( 9 25), . . , .
4.

( 1
=
( ' 1 I J
= - = -


(14)
v(xy)
(15)
( , ) = | (, ,
- I.
V -: / = v / ; / = -v / [1]. , , V
(, )
) = |
( x0, )
^ . v , ^ --
^
(,)
' ( x0, )
, , ^
-- --

(16)
0, - 2, . -, . , .
3 (, , )
= (, , ) = ^.
. : 2 = . 2 . (, , 2) * ), ) 2, - ), * (, ) : ( * (, ), V* (, )) = 0.
(16) , - V -. , V, 2V = (- / v / ) 2 = ( / / ), . V:
v ^^ - ^^
,<2 )= + = ∞. (17)
, , - -
, (1 7) -.
5.

= , (18)
2
( - 2) - . Q , , =
Q = 8^ = -8^ <

-8| (1 ) = -8|Ud. (19)
- , ; - ; 8 - .
6.
.


, , .
. , . , [11] (. 4). X Matlab- delaunayn(X).
. , 3. (13), . : 8-10. . CSIR- [12], .
. 4.
. , 4, tg = 0
. 02 = . 5 6. V (17) . , , V 0 1. (. 5). , V , V . 1, 2 3. , V . : (, ) = + + v(, ) = + + .
^ 1( ( ( 1
2
^ 3
1 2

/V /
V
2
^3
1 2

/V

V ^ /
(20)
(17)
. , --+--= + = 0
^

( 2) + ( 2 3) (1 2) + ( 2 1)

= 1 .
(21)
(22) (23)
(22) 0 < - 1. -
,
(. )
..
.

V
2
2
v3 = V + v2
=
. 5. V
, (22) V , . (. 5) , (22), V. (. 5^ d, e). .
. 6.
. 6. ( ) ( ) = 0 - = 0
(18), (19) . 20 10 = 2,20 . 20 , :
, '
- , 3 - , - .
, , ,
20 10 1,113
20 14,14 2,686
20 17,32 7,192

1. (, , ) .
2. . .
3. , - . .
4. , .

[1] .., .. . .1. . - : - , 2005. - 254 .
[2] .., .. . .2. . - : - , 2005. - 239 .
[3] .., .. : , , . - .: , 1997. - 320 .
[4] .., .. . - .: , 1977. -736 .
[5] .., .. . - : , 1978. - 592 .
[6] .., .. . - .: , 1975. -352 .
[7] Li R., Chen Z. and Wu W. Generalized difference methods for differential equations. Numerical analysis of finite volume methods. New York-Basel: Marcel Dekker, Inc., 2000. - 459 p.
[8] .., .., .. . . .5. , . - : , 2008. - 664 .
[9] Patsiuk V. Mathematical methods for electrical circuits and fields calculation. Chiinau, Central Editorial-Poligrafic al USM, 2009. 442 p.
[10] .., .., .., .. . 3: . 4- . .-: , 2004, 384 .
[11] .. . http://ps300.narod.ru/fr3d/mesh.htm
[12] .., .. . -: - . - 70 .
.
. .-., , . : - , , , , . 140 , 9 , .