681.2: 536.083


..
, . 1,5 . .
: , , , , , , .
() . , , . , [1], , . : , .
1- [2], , . , .
, . () [3]. [0, ] [0, ]:
^ X
0(0, ) = |[(0, ) - ^(, )] + (, )dxdx, (1)
0 0 0
0(0,) - , =0;
1, - .
1 (1) [0, 1] [1, 2] (). :
M X = ,
(2)
M
L x
I [t (, )- (L, )] d II (X, )dxdx

L
I [ (, ) - (L, )] d II )dxdx


(2) : ( 1) (2) - ( 2) (1)
=
( 1) ( 2) - ( 2) (1)
( 1) (2)- ( 2) (1) ( 1) (2)- ( 2) (1)
1 = 15 2 = [15 2 ] -
L
',

^
; (1) = I [(, )-(, )] d , (1 ) = (, )dxdx
L
( 2) = I [(, )- )] d, (2 ) = (, )dxdx

() , :
L
L
L
11 ( )dxdx ї11 ( )dxdx = ( ) 0() ( = ( X (3)


=

=
() = Q<m)()()- [4],
=
^) [0, ] :
L /
= II ( - (- )^ ^;
=
=
%)()=(-(-) (=0 m), (/*)-
=0 / =0
- ^,) . , 1 =0 =.
2 2
: 0= /3,1= /6.
, (3)





2






2

, . , .
1 (2), : ; ; , ; .
- , . , , . .
[3]: 0,417L4a-1 [max^], maxt'x - ; 1, , L - , . , t1 t2 max tt (t )(i = 1,2). , tt(x = 0, ). ,
t1 t2 t (0, ) -1 (L, ), t't(x = 0, ).
1, : ; - , .
t1 t2 : , -
, t2 - t1= (20^40) , .
t1 - tt (1), . 1 - =(0,5^1,5) .
1 (). : - - . :
(, 0) = (,0) = (,0) = 0;
/ , < ,+^ ( = ., 0 = 0)
) [0 , = 1,3,5... ,
,(0,) = X, ^^ = *(*1,),

^ (2,) = ^ (2, ) ^ (3, )= _ ( )
_ , _ \3,

1 = ,2 = 1 + ,3 = 2 + ; ,, - , ; - ; , , - , ; t (, ), to( , ), t (, ) - , .
1,3,5,... 2,4,6,... . . 1, .
, , [6], . , , , [6]:
X
(1,) 0 = I&(0,)- t(1,)]? - ---(0,) + 2t(0.51,)]0,
0 6
1 2 : 1 - : ; 2 - ( [1, 2] 20.. .40 ). 1 X .
= (3...4) , :
1= (0,05.1) /(-) = (1...5)-10"7 2/. : = (2...5), 1= (0,2...0,5) /(-), = (1...3)-10'7 2/; = (1^1,5) , 1 = 0,2 /(-), = 1,2-10-7 2/.
.1. (-----,* )
() , 1: - : 1=0,2 /(), =1,2-10?2/; - : 1=400 /(), =1121062/ ( ), 1=10 /(), =4106 2/ ( )
1 , . 2%, - 1% 25∞, 2 > 1+40 , 1- t < 10 ∞.
, , , . : 8= ± 0,5%, ±1%. 8 =(1^3) %; 8 = ± 0,5%, ±1%.
8 , 8 , 8 . 2.
, 5, 8, 8 (2) -
, 10%, - 4%.
5;,,
%
2.5
1.5
0.5
V
-"" 1 1 1
* -:: * ' 1
1 { ^ ----- ]

[ ""
5 5., % % 9 4
8
\
L )
i !!:" | ! ^ 1
1 '
[
5,
%
2
)
± 5, %
2
)
± 5 %
. 2. 8,(4*) 8 (^), : -1=0,5 /(), =210?2/; -1=0,05 /(), =10 72/ 5 : ,
5= ± 0,5%, ±1%
1 , . 3, : 3010; : 20. 2, 20, 820, , , .
, : - 1 = 7.400 /(-), = (3,5...115)-10"6 2/; - = 0,5 10-3 , 1 = 20 /(-), =5-10"6 2/; - = 0,110-3 , 1= 0,15 /(-), = 1,2-10-7 2/; - = 0,5-10-3 , 1= 14 /(-), = 4-10-6 2/ - 1= 0,026 /(-), = (0,1^20)-10"6 2/, = 5-10"6 .
, , : - (..) 4 ; : - . . 1 ((,) = (,) = ?), -
7 2
.. 3 =10 /( ); - .. 3 =10 /(2-) = (104^106) /(2-).
.3. : 1-,, 2 - , 3 - , 4- 5, 6 - , - : , : *(,), (,) - ; 1('), 2() -
1, . :
*1
*0 = -1 00() 01 + 11 *1( , 1 = -1 00()
V 0 ^ V
+
0,0 = 2*1 ()| 0 +3*2 () 0 , 1,0 = 2*1 () +3*2 ()
1 2
0,1 = | [*1 () - *2 ()^, = | [*1 () - *2 ()],
(4)
(5)

( ) = | [2^ ()- 1? ( )] -[0,33 () + ? ()] 0 - -
0
, . 2() [0, ]; 1, , , , - ; 0, 1, 2, - ; - ; ?1(), ?2()
267
X
2
X
X

2

1
0
X
- - , .
0, (4) () [5]. .
, : -6 - 1=7 /(-), = 2,121-106 /(3-), = 0,5, 1, 1,5 ; 121810- 1=14,5 /(-), =3,625-106 /(3-), = 0,5, 1 ; - 1=60 /(-), =3,75-106 /(3-), =
0,5, 1 ; - 1=133 /(-), =2,558-106 /(3-), =1. =5 ,
4 2
: ^= 1,9-10" -/, ^=0,8^1,6 2-105 [2].
: 0=3,69-10-6 -2, 1=1,31-10-3 /
2%. , , , : ^ = ()-1 2, (5): 2=4,6-10-5 2 3=8,2-10-6 2,
20 = -1 (0 - ), , = -1 (1 - )
*0.0 = () 01 , *0,1 = ?2 () 01 , ^1,0 = ( ^ ^ , *1,1 = ?2 () 1^.
, , 3%, - 6%.
1 , , . 1 1,5 , -
4 2
- ^= (1,3^1,9)-10- /. 1 1 .4.
: (1^2) /, - 0,5 /; [1, 2] 30 .
, 2 % , , [5].
.4. , : ( ,+, ) - max, min ; n - 8 8 ,

, 1 , . , 1 , (5^7) %, -02, [5]. 10%.
, 1 - , , , 1 .
-02 ,
269
1.

1. .., .., .. // . : - 2002. .8. 1. .54-62.
2. / . .. -. .: , 1986. 256 .
3. .. // . 2008. 6. . 32-38.
4. .. . : , 1979. 256 .
5. .. 1=(10^400) /(-) - // . . . : - .. 2013. . 5. .108-117.
6. .. // .2006. 12. .37-42.
, . . , ., iuia@bmail.ru. ,
., . .. ,
METHOD OF MEASUREMENT OF THERMAL CONDUCTIVITY AND HEAT CAPACITY OF COMPLEX BASED ON THE INTEGRAL FORM FOURIERS EQUA TION
Yu.I. Azima
Before the theory of non-stationary thermal conductivity measurement of complex method and volumetric heat capacity of solids based on the identification of integrated forms of heat equation. Shows mathematical description of heat load cell model for cylindrical samples of materials with low thermal conductivity and designs in the form of plates with thickness up to 1.5 mm of materials with high thermal conductivity. Results of simulation of calibrating the measuring cell and integrated data measurement units.
Key words: integrated measurement, integral form, thermal conductivity, volumetric heat capacity, measuring cell, simulation, mathematical model
Azima Yuriy Ivanovich, candidate of technical sciences, Associate Professor, iuia@bmail.ru, Russia, Novomoskovsk, Tula oblast, NOR they MUCT. D. I. Mendeleev