ї

621.372.51.049.774:658.512.26:004.92
.. , .. , ..
ї
ї , Locus. , . .
: , , , ї .
(), [1, 2], [3, 4], [5] .
[6, 7] ї , Locus [8]. ( 2 6), - , , . , , . , () . - [7].
[6, 7] , . - . , , -.
ї , . .
. ( = 1,m) [ , ] Zs () Zl (). (. 1), ()
G- () < 0() < G+ (), = 1, m, (1)
G- () G+ () - G^) . (1) .
, Si 1-1' S2 2-2' . 1 G [9]:
IS1I = IS2I = |S|; (2)
G = 1 - |S|2, (3)

S =
Zs - Z*
ZS + Zii
; S2 =
Zout ZL .
?
Zout + Zj
(4)
Es .
r-O0-
Zs
r>
1'

<-l
2'
-o
Zl
7 7
jm ^out
. 1.
2^ ^ - .
, . 1 .
(2)-(4), , , (1), ( ) () (zout) . , ^ () (), , [7, 10]. . () (), ..
[ ( ) (). (^) <0() ^ + () , , () {(), .. { () { (). , .. { () { () () (). , - .

_0__!

0_

. 2. : - 1; - 2; -
ї [11] , . 2% 2'^ (. 2, , ). [11] , .. 2% = , 2 = ' +
= 1/2% = 0% + ' , 1 = 1/2 = ' + )' .
[11] 2% 2 ( 1 - . 2, , 2 - . 2, ). , (, ) (/, ):
- 1:
-1
- 2:
7 s-mr L , RJ
xc =; bc = ; 1 =; bi =--- ;
Rj L
Gjy T^t 1
xc =77; bc =^~; xi= lgl ; bi = 0 GL 0LGL
(5)
(6)
1 2 (1 2) . 2, [11]:
- 1:
= 5 - - $ ; 2 = 5' +*' , (7)
(1 + )

M = - 2:

jrs (1+x2l)-r2; 5 = ±1; >s = ; xs = Rf; >1 = ^^^ = 1; xL = Rf;
rl rl
bi = 5 N - bs; x2 = 5'N +2bL'gS , (8)
(1+bL) gs
N=7 gs (1+bL) - gS; 5=±1; gs = bs = -; gL = Q-=1; bL = G-.
Gl Gl GL GL
x1 b2 (b1 x2), ( ) (5), (6) () . M (N) , .
[11] 1- 1'
2-2' (. . 1), Zs () = Z*n () Zl () = Zcmt (). (1), [1, 9]. Zs Zin ( Zl Zcut) [ , ], G^) < 1. , .
[11] [6, 7] ї . (. 2, , ), .
1. (. . 1) [7, ]
[ , ] Zs (), Zl (), G () G + () Zn Zcut, (1). En () Ecut () Zn Zcut.
2. . En () Zjn ( ї) : Z∞n () En ().
3. = , Z's = [Z∞ ()] , Z'l = Zl () (5)-(8)
. 2, , .
4. Zn Zcut
Z^n () ZCut () Zs () Zl (). Z's = [Zjh ()] Z'l= Zl(), Z∞n () Z∞n () En (). , Z's Zs (),
*
Zcut () Zl (), Zcut () Ecut (/ ) .
5. 2∞ () (), . , 2∞ () { ().
6. , ї 2∞ (), 2∞ () 2. , 2∞ (), 2∞ () 2∞^ ()
.
, [6, 7], . () 0 (. 2, ). ( ) ( ) . . 0 , 0 - ,
2% () 2 ()
0. (5)-(8)
0 2%() 2() 2 () 2().
, 2∞ (), () 2∞ (). - 2∞ () , 2∞ () ().
^∞1 () ^. , -
.
Locus (. 3). . , , . ( ), . .
1.
, [12, 13] (. 4). - Zs () Zl () 0,047...0,157 -1,25 (0,75).
Locus (. 1): (G ) (G+) , (ReZS, ImZS) (ReZL, ImZL) 6 .
1

F, G G+ ReZs, ImZs, ReZL, ImZL,
0,048 0,75 1 29,6 35,8 35,5 -22,7
0,07 0,75 1 37,8 38,0 25,1 -25,0
0,1 0,75 1 43,2 40,7 13,5 -22,2
0,12 0,75 1 45,1 43,2 8,0 -18,3
0,15 0,75 1 46,7 47,7 2,9 -11,7
0,157 0,75 1 47,0 48,8 2,2 -10,0
, , . 5 . 2, : Gmm - ; AG = Gmax - - ; Gmax - ; |S|max - .
1 2 (. 5, ) ї ї [12] [13] . 3 (. 5, ) - ї [14]. 4 (. 5, ) - , - [15]. 5 (. 5, ) - () [16]. 6 (. 5, ) ї , \ L4 , 2 L3 (5)-(8). , Locus (G > 0,75), Zout(f) 6 Zout . 6.
2

Gmin AG |S|max n
1 5, ї - [12] 0,7423 0,1093 0,5076 6
2 5, ї - [13] 0,7474 0,0979 0,5026 4
3 5, ї - [14] 0,7306 0,1163 0,5191 6
4 5, - [15] 0,7503 0,0902 0,4997 6
5 5, [16] 0,7362 0,1569 0,5136 5
6 5, ї 0,7488 0,06297 0,5012 4
1=41,78 2=9,515 4=35,925 !!________________________________rrm
=47,48 -S 5=41,55
1=44,7 3=35,845
011-------->I,-------
I 4=43,855
2=47,74
1=5,5 =157,5 4=23
_ '
1=4,3 =153,7 =21,88
1=37,88 2=19,99 4=39,45
II_____~W_ ______TYVW
C3=45,04 ,=45,54
Cj=48 3=36 0__||-----------TYYYV
2=46,5
4=45

. 5. ,
, -0,5
-0,7
-0,9
-1,1
-U
-13

V \ \ / 1 \ \ l
r\ \ \ * / \' / \ \ / V / \ 1 \ 4 \ V
-1,25 V/ \\ v\//


0,05
0,1
0,15

15 25 35 ,
. 6. . 7. 2
6 21 ( ) 6 ( )


0,5:1
0,496:1


, , , , 4 ( 6). [13] ї ( 2). . 7 6 2. , , ї , .
2.
2-6 8 1503. [13] [5, 16]. ZS() , ZL(a) - . , . 5 (k = 1,...,5) . 3, Gr() - -
; G , G+ - , ±0,2 Gr.
3

F, Gr, GT, G+, ReZs, ImZs, ReZL, ImZL,
2 -1,271 -1,471 -1,071 75,08 0,84 83,16 -135,9
3 -0,5188 -0,7188 -0,3188 81,22 2,98 53,02 -102,9
4 -0,5542 -0,7542 -0,3542 81,94 -1,52 35,56 -77,55
5 0 -0,2 0 85,15 -1,40 39,93 -68,64
6 -0,6525 -0,8525 -0,4525 81,44 -1,19 22,69 -46,11
, , . 8 . 4. : 5 = (| G{) - Go(k )1) -
k
G(k) ї
Go(k) = [G + (k) + G ( )]/2 k ; Gmax - .
1 (. 8, ) [5], 2 (. 8, ) - ї [13], 3 (. 8, ) - () [16], 4 (. 8, ) - [17], . . 4 . 8, - 4 5. (. 8, ) , .
4
, ________
^max, Gmax, n
1 8, [5] 1,152 0,5968 5
2 8, ї [13] 0,1965 0,05895 4
3 8, [16] 0,07983 -0,05515 5
4 8, - GENESYN [17] 0,1929 -0,059 4
5 8, ї Locus 0,1677 -0,09373 5
6 8, ї Locus 0,2327 -0,04045 4
2=0,66 4=2,02
2=2,455
5=3,086
2=0,4685 =2,314
10 1 1
1=0,31 3=7,72 5=0,1 1=0,4072 4

2=0,503 4=2,278
--
1=0,3077 3=0,8451 -1 4=4,136 1=0,4
.
3=6,219
1=1,12 3=1,0 011-------------
5=1,62 -rYYY^__o
4=3,815
2=0,228
2=0,4
_\.
1=0,435
4=2,42 ->\__________
3=5,6

. 8. ,



5 6 (. 8, , ), 5 4 , ї . 5. . 9 Zout, . , , 5 , . , (. 8, ). 1 , (4) (5) , 2 3 . Zout( /) . 9.
. 9. . 10. 2 ( )
5 21 6 ( )
ї 6 (. . 8, ), . 10 ( ). 6"(), 6 () ї 60(). . 10 2, [13] -
ї ( ). . 8, , Locus 6 2, (. . 4 . 10).
. ї . , Locus, , .
- ї ( 14.740.11.1136, 14.B37.21.0462, 14.B37.21.0345, 14.132.21.1598 14.132.21.1745), 09.04.2010 . 218, ї 12.02.2013 . 02.G25.31.0042.

1. // . . . .. . - .: , 1965. - 72 c.
2. Youla D.C. A new theory of broad-band matching // IEEE Transactions on Circuit Theory. - 1964. -Vol. CT-11. - P. 30-50.
3. Carlin H.J. A new approach to gain-bandwidth problem // IEEE Transactions on Circuits and Systems. - 1977. - Vol. CAS-24, 4. - P. 170-175.
4. Yarman B.S. A simplified real frequency technique applied to broadband multistage microwave amplifiers / B.S. Yarman, H.J. Carlin // IEEE Transactions on Circuits and Systems. - 1982. - Vol. MTT-30, 12. - P. 2216-2222.
5. Abrie P.L.D. Design of RF and microwave Amplifiers and oscillators. - London; Boston: Artech House, 1999. - 480 p.
6. Babak L.I. Interactive visualї design of matching and compensation networks for microwave active circuits / L.I. Babak, M.V. Cherkashin // IEEE MTT-S International Microwave Symposium Digest. -Phoenix. AZ. - 2001. - P. 2095-2098.
7. .. ї -. - . 1. . / .. , .. -, .. // . . . - 2006. - 6 (14). - . 11-23.
8. ї / .. , .. , .. . // . . . .-. . . ї. - : -, 2007. - . 2. - . 113-118.
9. .. , / .. , . , ... / . . . .. , .. . - .: , 1971. - 440 c.
10. .. // . - 1995. - . 40, 10. - . 1550-1560.
11. .. . - .: . , 1980. - 368 c.
12. Carlin H.J. The double matching problem: Analytic and real frequency solutions / H.J. Carlin, B.S. Yarman // IEEE Transactions on Circuits and Systems. - 1983. - CAS-30. - P. 15-28.
13. Stephen E. Sussman-Fort. The Computer-Aided Design of Microwave Matching Networks // International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering. - 1991. - Vol. 1, 3. - P. 288-305.
14. Yarman B.S. Computer-aided double matching via parametric representation of Brune functions /
B.S. Yarman, A. Fettweis // IEEE Transactions on Circuits and Systems. - 1990. - CAS-37. - P. 212-222.
15. A New Method for Solving Broadband Matching Problems / H. Dedieu, C. Dehollain, J. Neirynck, G. Rhodes // IEEE Transactions on Circuits and Systems. - 1994. - Vol. 41, 9. - P. 561-571.
16. Du Plessis W.P. A genetic algorithm for impedance matching network design: Dissertation for the degree of Master of Engineering (Electronic). - Pretoria: University of Pretoria, 2003. - 195 p.
17. .. / .. , .. // . . . .-. . ї. - : , 2005. - . 102-105.

. ()
.: 8-923-415-92-62
. : samuilovaa@gmail.com
,
. . , . ,
.: 8-906-948-86-48
. : mik_cher@mail.ru

- . , . ї, .
.: +7 (382-2) 41-47-17
. : leonid.babak@rambler.ru
Samuilov A.A., Cherkashin M.V., Babak L.I.
Visualї design technique for networks on lumped elements providing broadband matching of two complex impedances
A new visualї technique is proposed for designing networks on lumped elements that match two complex impedances in a prescribed frequency band. The technique is implemented in the CAD tool LOCUS and allows the control over matching network structure and elements. Two examples of the visualї design of broadband matching networks are presented.
Keywords: broadband matching, matching network, complex terminations, visualї design.